
1 The Odometry Model

The state of the robot at time t is qt ∈ R3, where

qt =

θtxt

yt

 . (1)

The state of the map is mt =
[
mx1 my1 . . . mxn myn

]T ∈ R2n

Let ξt =

[
qt
mt

]
∈ R2n+3 be the combined state vector.

The odometry model that we derived earlier in the class governs how the
robot’s state transitions from time t− 1 to time t, given the twist

ut =

∆θt
∆xt

0

 . (2)

The ∆yt component of the twist is 0 for the diff-drive robot.
To perform the odometry update, the twist umay be computed from encoder

readings (this is what we do with our system) or it can be given as the control
input (for example, if no wheel encoder feedback were available).

The forward kinematics of the robot convert encoder readings to a twist. At
each timestep, the odometry calculations calculations provide Twb′ = T (q) =
T (θ, x, y), the transformation from the world frame to the updated body frame.

The state transition has the form:[
qt
mt

]
= g(ξt−1, ut, wt). (3)

The transition function g(ξt−1, ut, wt) is the model of the robot’s movement
and the map’s movement. The map remains stationary, and the robot moves
depending on the twist.

There are two cases for the dynamics, depending on whether there is a non-
zero rotational velocity.

1. Zero rotational velocity: ∆θt = 0:

Twb′ = T (θt−1, xt−1 +∆xt cos θt−1, yt−1 +∆xt sin θt−1) (4)

The transformation Twb′ shows how the robot moves from its previous
configuration (θt−1, xt−1, yt−1) to its new configuration (θt, xt, yt).

The full state transformation (including the stationary map state and
process noise wt ∼ N (0, Q)) yields

[
qt
mt

]
=

[
qt−1

mt−1

]
+


 0
∆xt cos θt−1

∆xt sin θt−1


02n

+

[
wt

02n

]
(5)
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The process noise accounts for uncertainty in the movement of the robot.
Their is no noise component for the landmarks because we know they
remain stationary. The notation 0m means a zero vector in Rm.

2. Non-zero rotational velocity1. ∆θt ̸= 0:

Twb′ = T (a, b, c) (6)

a = θt−1 +∆θt

b = xt−1 −
∆xt

∆θt
sin θt−1 +

∆xt

∆θt
sin(θt−1 +∆θt)

c = yt−1 +
∆xt

∆θt
cos θt−1 −

∆xt

∆θt
cos(θt−1 +∆θt)

The transformation Twb′ leads to the state transition equation ξt = g(ξt−1, ut, wt):

[
qt

mt−1

]
=

[
qt−1

mt−1

]
+


 ∆θt
−∆xt

∆θt
sin θt−1 +

∆xt

∆θt
sin(θt−1 +∆θt)

∆xt

∆θt
cos θt−1 − ∆xb

∆θt
cos(θt−1 +∆θt)


02n

+

[
wt

02n

]
(7)

Let ξ̂t =

[
q̂t
m̂t

]
be the current state estimate

The Extended Kalman filter uses a state transition model linearized about
the current estimate. Therefore we Taylor expand g(ξt−1, ut, 0) about our esti-

mate ξ̂t:
g(ξt−1, ut) ≈ g(ξ̂t−1, ut) + g′(ξ̂t−1, ut)(ξt−1 − ξ̂t−1). (8)

The function g′(ξt−1, ut) is the derivative of g with respect to the state ξ:
There are two cases

1. ∆θt = 0:

At = g′(ξt−1, ut) = I +


 0 0 0
−∆xt sin θt−1 0 0
∆xt cos θt−1 0 0

 03×2n

02n×3 02n×2n

 (9)

2. ∆θt ̸= 0:

At = g′(ξt−1, ut) = I+


 0 0 0
−∆xt

∆θt
cos θt−1 +

∆xt

∆θt
cos(θt−1 +∆θt) 0 0

−∆xt

∆θt
sin θt−1 +

∆xt

∆θt
sin(θt−1 +∆θt) 0 0

 03×2n

02n×3 02n×2n


(10)

1Remember, floating point arithmetic is inexact so in practice you want to check for small
rotational velocity rather than expected it to be identically 0

2



2 The Measurement Model

Let rj be the distance to landmark j (this is the range measurement). Let ϕj

be the relative bearing of landmark j (this is the bearing measurement).
Relative cartesian x̄, ȳ measurements can be transformed into range bearing

measurements:

rj =
√
x̄2 + ȳ2 (11)

ϕj = atan2(ȳ, x̄) (12)

(The laser scanner gives range-bearing measurements but the landmark detec-
tion algorithm provides relative x̄, ȳ measurements). Either can be used but we
express the equations in terms of range-bearing here because noise is more nat-
urally expressed in these coordinates and it is more generally applicable. You
could follow similar procedures to derive the equations directly for relative x, y
measurements however (in which case the measurement model would be linear).

The measurement model relates the system states to the measurements. The
measurement for range and bearing to landmark j is:

zj(t) = hj(ξt) + vt, (13)

where

hj(ξt) =

[
rj
ϕj

]
=

[ √
(mx,j − xt)2 + (my,j − yt)2

atan2(my,j − yt,mx,j − xt)− θt

]
(14)

and vt ∼ N(0, R) is the sensor noise.

We can approximate hj(ξt) using a Taylor expansion about the estimate ξ̂t:

hj(ξt) ≈ hj(ξ̂t) + h′
j(ξ̂t)(ξt − ξ̂t). (15)

Let the estimated relative x and y distances be given by

δx = (m̂x,j − x̂t) (16)

δy = (m̂y,j − ŷt) (17)

and let d = δ̂2x + δ̂2y (this is the estimated squared distance between the robot
and landmark j at time t).

Then the derivative with respect to the state is the following block matrix:

Hj = h′
j(ξt) =

[[
0 −δx√

d

−δy√
d

−1 δy
d

−δx
d

] [
01×2(j−1)

01×2(j−1)

] [
δx√
d

δy√
d

− δy
d

δx
d

] [
01×(2n−2j)

01×(2n−2j)

]]
(18)

The matrix Hj ∈ R2×(3+2n), and has zeros corresponding to the landmark states
that have not been measured.

3 Extended Kalman Filter Slam

At each timestep t, Extended Kalman filter SLAM takes odometry ut and sensor
measurements zi and generates an estimate of the full state vector ξ̂t.
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3.1 Initialization

We start out with some guess as to the robot state (usually (0, 0, 0)) and covari-
ance:

Σ0 =

[
Σ0,q 03×2n

02n×3 Σ0,m

]
(19)

Often, the initial guess covariance Σq,0 ∈ R3×3 is initialized to zero (indicating
that we are certain that the robot is at its initial position. Σ0,m ∈ R2n×2n is
diagonal, with infinity (or very high numbers) on its diagonal, indicating that
the robot does not yet know about any landmarks.

3.2 Prediction

First, update the estimate using the model:

ξ̂−t = g(ξ̂t−1, ut, 0) (20)

Next, propagate the uncertainty using the linearized state transition model:

Σ̂−
t = AtΣ̂t−1A

T
t + Q̄, (21)

Where

Q̄ =

[
Q 03×2n

02n×3 02n×2n

]
(22)

is the process noise for the robot motion model, expanding to fill the whole state.
Notice that moving does not modify the robot’s knowledge of the landmark
locations.

3.3 Update

A separate sensor measurement step is completed for each landmark that has
been observed.2.

There are practical steps that must occur, beyond what happens in an ordi-
nary EKF, prior to incorporating the measurements.

1. Data association: Each incoming measurement must be associated with
an existing landmark state. If a measurement does not correspond to
a previously seen landmark, a new landmark is added/initialized. For
now, assume that we know the correspondence between measurements and
states. That is, we know that measurement i corresponds to landmark j.

2. Landmark Initialization: when a new landmark is encountered it must be
added to the state vector and initialized. If the measurement model is
invertible: then you invert the measurement model to get the state; oth-
erwise you may need to accumulate multiple measurements to determine

2Technically all landmarks could be updated in a single step but this is both harder to
implement and, due to the sparsity of the matrices involved, introduces many unnecessary
computations
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the initial landmark postion. In the range-bearing case, the measurement
model is invertable so landmark j can be initialized as

m̂x,j = x̂t + rj cos(ϕj + θ̂t) (23)

m̂y,j = ŷt + rj sin(ϕj + θ̂t) (24)

Once the landmarks are initialized, we incorporate each landmark measure-
ment one-by-one (even if we’ve received multiple landmark measurements in
the same time-step). Since measurements improve our estimate, our linearized
model depends on the estimate, and our measurement of landmark i is not af-
fected by the states of the other landmarks, it makes sense to incrementally
incorporate each measurement.

If we have M measurements, then z ∈ R2M (because measuring a landmark
provides range and bearing in this example). The range/bearing of landmark j
is then zit ∈ R2.

3.3.1 For each measurement i

Let j be the landmark associated with measurement i. There can be multiple
measurements of the same landmark, but the idea is that we know the corre-
spondence between the measurements and the landmarks.

1. Compute the theoretical measurement, given the current state estimate:

ẑit = hj(ξ̂
−
t ) (25)

2. Compute the Kalman gain from the linearized measurement model:

Ki = Σ−
t H

T
i (HiΣ

−
t H

T
i +R)−1 (26)

3. Compute the posterior state update

ξ̂t = ξ̂−t +K(zit − ẑit) (27)

4. Compute the posterior covariance

Σt = (I −KiHi)Σ
−
t (28)

When we incorporate the next measurement (i+1) we use the updated state

and covariance (Σt, ξ̂t) for Σ
−
t and ξ̂−t .

4 Practical Tips

1. When subtracting angles, always make sure to normalize to between −π
and π. This ensures that you always get the shortest angular distance.
Otherwise you can get discontinuities.

Further reading: [1], [2]
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