
MSR Hackathon: Networking Lab

1 Introduction

In this lab, we will be doing some basic networking operations in Linux. Networking can be quite complex,
and certainly deserves a course all of its own. In this lab I will try to walk you through several simple
examples and tools that could be useful as you work through the rest of the year.

2 Checking for Required Packages

Before you begin you need to check that you have all required packages. Generally, your Linux distribution
will already include the package that allows you to ssh into another machine, but many distributions do
not include the package that allows someone else to ssh into your machine. To check, on a Debian-based
machine like Ubuntu, use dpkg -l | grep openssh. This will print all packages that are installed or have
been installed with “openssh” in their name. If you don’t see openssh-server in the list, then you need to
install that using sudo apt-get install openssh-server.

3 Establishing a Local Network

The first thing that we need to do is establish a network between you and your partner’s computer. If you
were already on the same local (via a wired or wireless router), you would be able to skip this step. If you
were both on the internet, but not on the same local router, you’d still be able to complete the rest of this
lab, but there may be many more steps required to ensure that your computers would be able to find each
other. Complete the following steps:

1. Disable your network manager The network-manager daemon is Ubuntu’s default tool for con-
necting to networks. When you click the little WiFi symbol in the upper right of the screen, you are
using network-manager. We want to turn network-manager off to ensure that there are no conflicts
between what it’s trying to do with your hardware, and what we are trying to do. There is definitely
a way to get this done without disabling network-manager, but it could be complicated. Disable
network manager with

sudo service network-manager stop

and after this exercise, you can re-enable with

sudo service network-manager start

2. Plug an Ethernet cable into the port on each partner’s computer A few years back, there
were special Ethernet cables, called crossover cables, for directly connecting two computers directly.
These days, network adapters are capable of auto-detecting the need for a crossover communication
channel, and automatically reconfiguring internally.

3. Establishing a local network We will use Avahi for assigning IP addresses to the computers on
your local network and hostname resolution (multicast DNS). Avahi is a so-called zeroconf tool for
automatically creating and managing local networks. This step could be done with old-school Linux
tools like ifup and ifdown, but this way is much easier. First we need to get the name of your
Ethernet network interface controller or NIC. This is the name that your computer uses to refer to the
physical hardware that provides your Ethernet connection. Running the command ifconfig -a will
report information on all network interfaces that are currently available, even if they aren’t currently
connected. On older systems the name of your Ethernet NIC is likely something like eth0 or eth1.

1



On newer systems systemd has switched to using “predictable network interface device names” (read
more here). In that case, the name you are looking for should begin with an en – it will likely be
something like enp3s0f1. If you can’t figure out the correct device using ifconfig -a you could try
running lshw -class network (or even better, add sudo to the front of that command if you have
permission). Then look for the logical name provided for each interface that has info printed out.

Once you have the names for each computer, open a terminal and type (where the last term should be
the correct name)

sudo avahi-autoipd enp3s0f1

Keep this terminal running throughout the duration of the lab. Note that Avahi can easily be set to
run automatically. When your command is finished running you should see a line that says Successfully
claimed IP address 169.254.X.XXX.

4. Examining your network Both partners should be able to see their IP address now using ifconfig

or ip addr show. Each partner should also be able to ping their partner’s computer using their IP
address. So if your partner’s IP address was 169.254.44.204 you should be able to type type ping

169.254.44.204 and see a response from their machine e.g.:

jarvis@vedauwoo:~/work/hackathon_2018 [2018*] ping 169.254.44.204

PING 169.254.44.204 (169.254.44.204) 56(84) bytes of data.

64 bytes from 169.254.44.204: icmp_seq=1 ttl=64 time=0.749 ms

64 bytes from 169.254.44.204: icmp_seq=2 ttl=64 time=0.525 ms

64 bytes from 169.254.44.204: icmp_seq=3 ttl=64 time=0.550 ms

^C

--- 169.254.44.204 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 1999ms

rtt min/avg/max/mdev = 0.525/0.608/0.749/0.100 ms

If name resolution is working properly you would also be able to ping your partner’s computer using
their hostname:

jarvis@vedauwoo:~/work/hackathon_2018 [2018*] ping test2018.local

PING test2018.local (169.254.44.204) 56(84) bytes of data.

64 bytes from test2018.local (169.254.44.204): icmp_seq=1 ttl=64 time=0.369 ms

64 bytes from test2018.local (169.254.44.204): icmp_seq=2 ttl=64 time=0.466 ms

^C

--- test2018.local ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time 1001ms

rtt min/avg/max/mdev = 0.369/0.417/0.466/0.052 ms

You can figure out your own hostname using the hostname command. Note that we often need to add
the .local to the end of the hostname when working with hostnames on a local network.

If pinging via hostname doesn’t work, both partners can try restarting the avahi service using sudo

service avahi-daemon restart. If hostname pinging still doesn’t work, for now, just move on. One
could edit the /etc/hosts file to provide a link between the partner’s IP address and hostname, and
then hostname pinging would almost certainly work. Quoting from the hosts manpage:

This manual page describes the format of the /etc/hosts file. This file is a

simple text file that associates IP addresses with hostnames, one line per IP

address.

2

https://www.freedesktop.org/wiki/Software/systemd/PredictableNetworkInterfaceNames/


4 Basic SSH usage

SSH stands for Secure Shell, and it is a common tool in Linux/Unix for providing secure, encrypted com-
munication between two networked computers. It is important in both Git and ROS. SSH can be used for
securely logging into remote systems, transferring files, running remote processes, tunneling, window for-
warding, and more. It works well in both Linux and Mac. On Windows, it is trivial to SSH into a computer,
but Windows does not support running an SSH client (to allow others to remotely log into the Windows
computer). One of my most common SSH use cases is to log onto a remote server and run code that may
run for a very long time. SSH combined with a terminal multiplexer (such as screen or tmux) allow me to
log into the server and start some long-running process. I can then detach my multiplexer and log out while
leaving the process running on the server.

In this section you and your partner will simply log into each other’s machines.

1. Note Details of Partner’s Computer You will need your partner’s username, hostname, and IP
address. Note that the default terminal prompt in Ubuntu is something like username@hostname:pwd$

2. Using Partner A’s Computer Log Into Partner B’s Machine as Partner B via IP Your
command should be something like

ssh partnerb@169.254.X.XXX

You will then need Partner B’s password as you are logging onto their machine as their user. If you
had an account on their computer, you could instead SSH into their machine as yourself, and use your
own password. This is how remote logging in via SSH is actually done, you should never
give someone your password!

3. Using Partner A’s Computer Log Into Partner B’s Machine as Partner B via Hostname
This command should be something like

ssh partnerb@hostname.local

the .local at the end of the command is not always needed. It generally depends on local router
configurations; in our case with Avahi’s default options, we need it.

4. Repeat the previous two steps but switch roles.

5 Copying Files Over a Network

There are two common tools for copying files over a network scp and rsync. SCP stands for secure copy,
and it uses SSH for data transfer. It is very simple, and basically works exactly like the cp Linux command.
Rsync is significantly more powerful at the cost of greater usage complexity. Rsync supports things like
automatic-backups, network compression, intelligent ignoring of files, and special include/exclude tools. It
is powerful enough that many experienced Linux users completely replace even the local cp command with
Rsync. In this section we will create a dummy file, and copy it to your partner’s machine using both
programs.

1. Create Dummy File Run the command

cd && echo "I just created this file!" > transfer_demo.txt

to put a text file in your home directory.

2. Partner A Copy File to Partner B with SCP On partner A’s machine, run the command (note
you are connecting to partner B’s machine as partner B)

scp ∼/transfer_demo.txt partnerb@hostname.local:∼/scp_transfer_demo.txt

3



3. Partner A Copy File to Partner B with Rsync On partner A’s machine, run the command (note
you are connecting to partner B’s machine as partner B)

rsync -avz ∼/transfer_demo.txt partnerb@hostname.local:∼/rsync_transfer_demo.txt

The -avz means use archive mode, tell me what files you are transferring, and use compression when
sending the data. Note that the biggest trick to using rsync is that whether or not there is a trailing
slash in a directory actually changes rsync’s behavior in a way that is not replicated by cp or scp.

4. Repeat the previous two steps but switch roles.

6 Advanced SSH Usage

6.1 Public/Private Key Authentication

SSH is equipped to handle several different standards for asymmetric encryption. Without getting into too
much detail, asymmetric encryption is a general class of encryption techniques that require two different
keys; one key, called the public key, is essentially just a huge number used for encrypting things. The other
key, called the private key, is a different huge number used for decryption. The critical concept is that the
private key cannot1 be calculated from the public key. So Alice can create a public/private key-pair, then
share the public key with Bob2. Bob can then encrypt a message for Alice using Alice’s public key. Bob
then transmits the encrypted message to Alice, and Alice can decrypt using her private key. As long as Alice
never shares her private key, she can widely distribute her public key, and anyone with a copy will be able
to transmit messages to Alice that only she can see.

There are many different asymmetric encryption algorithms (RSA being the most popular), and many
different protocols/programs that implement/rely on these algorithms (GPG, SSL/TLS, SSH, Bitcoin). SSH
can use several different algorithms for authentication. If Alice uses SSH to generate a public/private key-
pair, and Bob adds Alice’s public key to his list of “authorized keys”; then, Alice would be able to use SSH
to Bob’s computer without ever having to sign in or type a password. Her usage includes tools that use SSH
as a transport layer (Rsync, SCP, Git, etc.). Note that it is trivial to register your public key with GitHub
so that you can push to your repositories without using a password.

Let’s use public/private keys over SSH:

1. Both partners should check for a pre-existing public/private key-pair Navigate to ∼/.ssh/
and look for files called id rsa and id rsa.pub. If those files exist, then id rsa contains your private
key and id rsa.pub contains your public key. These were generated by the ssh-keygen command
line tool, and stored in SSH’s default location. Note that you can have more than one key-pair, and
they can be in other locations, but you then need to specifically tell SSH to use a key that is not
in the default location. Also note that when you generate a key, ssh-keygen gives you the option
to assign a password to the private key. If you enter one, you won’t be able to authenticate using
your private key unless you know that password. So be sure to remember your password! In
Ubuntu, gnome-keyring-daemon works with ssh-agent to cache this password so you don’t have to
type it every time. You generally have to type the password once, and then gnome-keyring-daemon

will remember the password until you logout or manually remove it (using ssh-add -D, for example).

2. If you need a key-pair, generate one Use the command (where you probably want to use a real
email address)

ssh-keygen -t rsa -C "your_email@example.com"

Then select the default location, and decide if you want your private key to have a password (I always
use one). Read more here: https://help.github.com/articles/generating-a-new-ssh-key-and-
adding-it-to-the-ssh-agent/

1Technically, you could “brute-force” this calculation, but it would require an infeasible amount of computation
2For some reason cryptography people like the names Alice and Bob for their stand-ins.

4

http://en.wikipedia.org/wiki/Public-key_cryptography
http://en.wikipedia.org/wiki/RSA_(cryptosystem)
http://en.wikipedia.org/wiki/GNU_Privacy_Guard
http://en.wikipedia.org/wiki/Transport_Layer_Security
http://en.wikipedia.org/wiki/Secure_Shell
http://en.wikipedia.org/wiki/Bitcoin
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/


3. Both partners share their public keys Each person should use SCP or Rsync to transmit a copy
of their public key (∼/.ssh/id rsa.pub) to their partner. Be sure not to accidentally overwrite
either of the public keys! In other words, don’t copy from ∼/.ssh/id rsa.pub on your machine
to ∼/.ssh/id rsa.pub on your partner’s machine.

4. Add your partner’s public key to the list of authorized keys The file ∼/.ssh/authorized keys

contains the list of public keys that you are letting SSH into your machine via key-pair authentication.
You can use a command like the following to add your partner’s public key to the list

cat <LOCATION_OF_PARTNERS_PUBLIC_KEY>/id_rsa.pub >> ∼/.ssh/authorized keys

You could also do this by editing the authorized keys file with a text editor and pasting your partner’s
public key onto its own line. Note that this step and the previous step can be done automatically using
ssh-copy-id.

5. SSH without a password You should now be able to SSH into your partner’s machine (as their
user) without using your their password! Although, you may need your SSH key’s password. Also note
that even without logging in TAB autocomplete in Bash will now work over the network. For example,
let’s say you are trying to scp a file from your partner’s computer to your computer. Then typing
scp partnerb@partnerb.local:/home/ and then pressing tab several times should autocomplete the
directories located in /home on partner B’s computer without ever needing a password.

One final important point is that the files in ∼/.ssh/ are per-user files. So if you were on a computer with
multiple users each user gets to control their own authorized keys, and public/private keypairs. Also note
that you’ve now given your partner access to login to your machine as your user without ever requiring a
password (other than possibly the password to their private key). This is obviously not very safe! When
you are done with this lab, be sure to remove your partner’s key from your ∼/.ssh/authorized keys file
(you could just delete the file).

6.2 Window Forwarding

SSH supports window forwarding with the -X option (capital letter). This allows you to open GUI programs
on your partner’s computer and have them show up on your computer. When you do this, you will typically
want to enable some compression algorithms to reduce the amount of data that must be transmitted over
the network.

1. SSH with window forwarding and compression Use the following command to SSH into your
partner’s machine with window forwarding and compression enabled:

ssh -X partnerb@hostname.local

The -X is all that’s needed for window forwarding. Note that you can also control which ciphers SSH will
use for compression when window forwarding. Although, when you start adding these options your SSH
commands might be very long, e.g. ssh -c aes128-gcm@openssh.com -XC partnerb@hostname.local

Many people use aliases or SSH config files to store these types of complicated commands so that they
don’t have to remember them.

2. Open a graphical program Just type gedit once logged in, and a gedit window should pop on your
computer, but it is running on your partner’s computer.

Note that there are many other window forwarding services that are more efficient that SSH. If you find
yourself doing this regularly, it is definitely worth setting up something more efficient. In my opinion, the
benefit of SSH window forwarding is that it is already on your system and requires basically no configuration.
Common other options would be VNC, xpra, and nx.

5

http://manpages.ubuntu.com/manpages/raring/man1/ssh-copy-id.1.html
https://www.digitalocean.com/community/tutorials/how-to-install-and-configure-vnc-on-ubuntu-18-04
https://www.xpra.org/
https://www.nomachine.com/


6.3 SSH config files

SSH allows you to store settings for logging into various other computers in the file ∼/.ssh/config. Some
great examples are presented here: http://nerderati.com/2011/03/17/simplify-your-life-with-an-ssh-config-
file/ Try and write a config file for logging into your partner’s computer.

6.4 Terminal Multiplexers

As mentioned earlier, the use of a terminal multiplexer with SSH can greatly increase your functionality. A
multiplexer allows you to have multiple terminals open within a single SSH login – this allows you to only
login over SSH once, and then simultaneously use multiple terminals. This is a very different functionality
than the “tabs” provided by gnome-terminal. Additionally, multiplexers are persistent – they allow you to
start processes, open multiple tabs, etc. and then detach from the multiplexer. Once detached, you are no
longer using the multiplexer, but all of your processes and tabs still exist. You can re-attach, maybe even
using a different computer, and your processes would still be there.

Likely, the most popular multiplexers are GNU Screen and tmux. tmux is generally considered to be more
modern and easier to configure, but screen is great too. I personally use byobu basically all of the time,
even when not using SSH. byobu is basically just a nice configuration for either screen or tmux – you can
use byobu with either backend, and byobu will provide a consistent look and user interface. The keyboard
shortcuts are easy to use, and byobu is easy to install on most Linux systems. You can see all of byobu’s

keybindings by looking at /usr/share/doc/byobu/help.tmux.txt or by visiting this post.
Try SSH’ing into your partner’s machine, opening a byobu session, creating several tabs and starting

several programs, and then detach from the session and logout. Log back in and re-attach to see all of your
tabs and programs are still there.

6.5 GitHub SSH authentication

If you’ve used GitHub much with HTTP-protocol remotes (e.g. https://github.com/username/project.
git) you may have noticed that you need to constantly type your username and password for GitHub when
you are pushing to the remote. This is annoying! Nominally, you should be able to use the Git credential
helper functionality to help you cache your GitHub passwords, but I’ve never had much luck with that.
Instead, most of the time3, I prefer to work with GitHub over SSH.

Since you already have an SSH key generated, you should be able to simply follow GitHub’s docu-
mentation on Adding a New SSH Key to Your Account. Then you’d want to use the SSH URL for
cloning, pushing, pulling, etc. The default, non-SSH URL would be something like https://github.

com/jarvisschultz/system_configurations.git while the SSH-based URL would be git@github.com:

jarvisschultz/system_configurations.git. Try setting up an SSH key with GitHub and then pushing
to a remote over the SSH authentication protocol.

Here are a few helpful resources:

• GitHub SSH help topics: https://help.github.com/articles/connecting-to-github-with-ssh/

• Change a Git remote’s URL: https://help.github.com/articles/changing-a-remote-s-url/

• Pro Git on Working with Remotes: https://git-scm.com/book/en/v2/Git-Basics-Working-with-
Remotes

• Pro Git on The Protocols: https://git-scm.com/book/en/v2/Git-on-the-Server-The-Protocols

3One notable exception is when I’ve worked at places that had a secure internet connection that blocked SSH connections
to the outside.

6

http://nerderati.com/2011/03/17/simplify-your-life-with-an-ssh-config-file/
http://nerderati.com/2011/03/17/simplify-your-life-with-an-ssh-config-file/
https://en.wikipedia.org/wiki/Terminal_multiplexer
https://en.wikipedia.org/wiki/GNU_Screen
https://en.wikipedia.org/wiki/Tmux
https://en.wikipedia.org/wiki/Byobu_(software)
https://askubuntu.com/questions/661940/i-just-dont-get-byobus-keybindings-systems-or/662705#662705
https://github.com/username/project.git
https://github.com/username/project.git
https://help.github.com/articles/caching-your-github-password-in-git/
https://help.github.com/articles/caching-your-github-password-in-git/
https://help.github.com/articles/adding-a-new-ssh-key-to-your-github-account/
https://github.com/jarvisschultz/system_configurations.git
https://github.com/jarvisschultz/system_configurations.git
git@github.com:jarvisschultz/system_configurations.git
git@github.com:jarvisschultz/system_configurations.git
https://help.github.com/articles/connecting-to-github-with-ssh/
https://help.github.com/articles/changing-a-remote-s-url/
https://git-scm.com/book/en/v2/Git-Basics-Working-with-Remotes
https://git-scm.com/book/en/v2/Git-Basics-Working-with-Remotes
https://git-scm.com/book/en/v2/Git-on-the-Server-The-Protocols

	Introduction
	Checking for Required Packages
	Establishing a Local Network
	Basic SSH usage
	Copying Files Over a Network
	Advanced SSH Usage
	Public/Private Key Authentication
	Window Forwarding
	SSH config files
	Terminal Multiplexers
	GitHub SSH authentication


